

Physics Equations Sheet

GCSE Physics (8463)

FOR USE IN JUNE 2024 ONLY

HT = Higher Tier only equations

kinetic energy = $0.5 \times \text{mass} \times (\text{speed})^2$	$E_k = \frac{1}{2} m v^2$
elastic potential energy = $0.5 \times \text{spring constant} \times (\text{extension})^2$	$E_e = \frac{1}{2} k e^2$
gravitational potential energy = $\text{mass} \times \text{gravitational field strength} \times \text{height}$	$E_p = m g h$
change in thermal energy = $\text{mass} \times \text{specific heat capacity} \times \text{temperature change}$	$\Delta E = m c \Delta \theta$
power = $\frac{\text{energy transferred}}{\text{time}}$	$P = \frac{E}{t}$
power = $\frac{\text{work done}}{\text{time}}$	$P = \frac{W}{t}$
efficiency = $\frac{\text{useful output energy transfer}}{\text{total input energy transfer}}$	
efficiency = $\frac{\text{useful power output}}{\text{total power input}}$	
charge flow = $\text{current} \times \text{time}$	$Q = I t$
potential difference = $\text{current} \times \text{resistance}$	$V = I R$
power = $\text{potential difference} \times \text{current}$	$P = V I$
power = $(\text{current})^2 \times \text{resistance}$	$P = I^2 R$
energy transferred = $\text{power} \times \text{time}$	$E = P t$
energy transferred = $\text{charge flow} \times \text{potential difference}$	$E = Q V$
density = $\frac{\text{mass}}{\text{volume}}$	$\rho = \frac{m}{V}$

	thermal energy for a change of state = mass \times specific latent heat	$E = m L$
	For gases: pressure \times volume = constant	$p V = \text{constant}$
	weight = mass \times gravitational field strength	$W = m g$
	work done = force \times distance (along the line of action of the force)	$W = F s$
	force = spring constant \times extension	$F = k e$
	moment of a force = force \times distance (normal to direction of force)	$M = F d$
	pressure = $\frac{\text{force normal to a surface}}{\text{area of that surface}}$	$p = \frac{F}{A}$
HT	pressure due to a column of liquid = height of column \times density of liquid \times gravitational field strength	$p = h \rho g$
	distance travelled = speed \times time	$s = v t$
	acceleration = $\frac{\text{change in velocity}}{\text{time taken}}$	$a = \frac{\Delta v}{t}$
	$(\text{final velocity})^2 - (\text{initial velocity})^2 = 2 \times \text{acceleration} \times \text{distance}$	$v^2 - u^2 = 2 a s$
	resultant force = mass \times acceleration	$F = m a$
HT	momentum = mass \times velocity	$p = m v$
HT	force = $\frac{\text{change in momentum}}{\text{time taken}}$	$F = \frac{m \Delta v}{\Delta t}$
	period = $\frac{1}{\text{frequency}}$	$T = \frac{1}{f}$
	wave speed = frequency \times wavelength	$v = f \lambda$
	magnification = $\frac{\text{image height}}{\text{object height}}$	
HT	force on a conductor (at right angles to a magnetic field) carrying a current = magnetic flux density \times current \times length	$F = B I l$
HT	$\frac{\text{potential difference across primary coil}}{\text{potential difference across secondary coil}} = \frac{\text{number of turns in primary coil}}{\text{number of turns in secondary coil}}$	$\frac{V_p}{V_s} = \frac{n_p}{n_s}$
HT	potential difference across primary coil \times current in primary coil = potential difference across secondary coil \times current in secondary coil	$V_p I_p = V_s I_s$