

Please write clearly in block capitals.

Centre number

--	--	--	--	--

Candidate number

--	--	--	--

Surname

Forename(s)

Candidate signature

I declare this is my own work.

GCSE COMBINED SCIENCE: TRILOGY

F

Foundation Tier
Chemistry Paper 2F

Tuesday 11 June 2024

Morning

Time allowed: 1 hour 15 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions in the spaces provided.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

Information

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

J U N 2 4 8 4 6 4 C 2 F 0 1

IB/M/Jun24/G4005/E7

8464/C/2F

0 1

The Earth's atmosphere has changed during the last 4.6 billion years.

0 1 . 1

What is the approximate percentage of nitrogen and of oxygen in the Earth's atmosphere today?

Draw **one** line from each gas to the percentage of that gas.

[2 marks]**Gas****Percentage (%) of gas**

Nitrogen

20

Oxygen

40

60

80

0 1 . 2

The approximate percentage of carbon dioxide in the Earth's early atmosphere was 95%.

Which are **two** reasons why the percentage of carbon dioxide has **decreased** since the Earth's early atmosphere?

[2 marks]

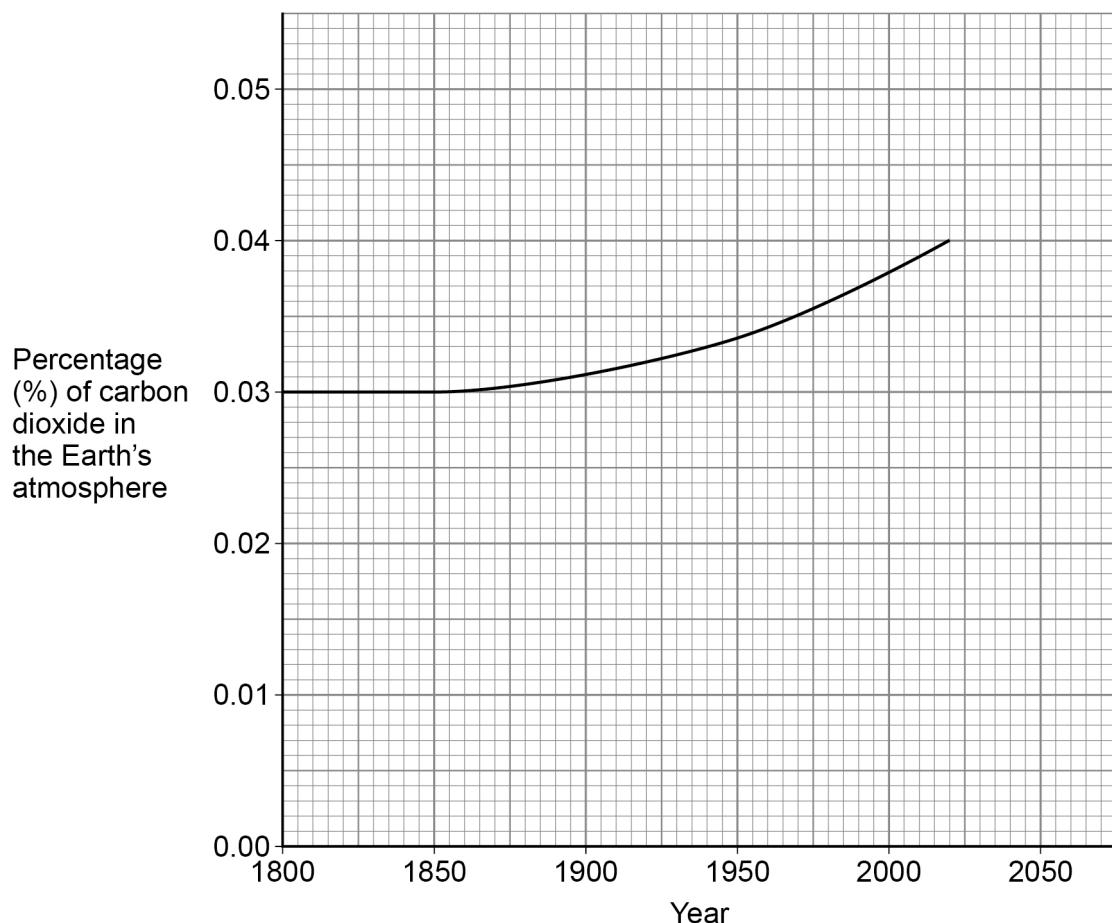
Tick (✓) **two** boxes.

Combustion of fuels

Deforestation

Dissolving in oceans

Photosynthesis


Respiration

0 2

0 1 . 3 **Figure 1** shows the change in the percentage of carbon dioxide in the Earth's atmosphere from 1800 to 2020.

Figure 1

Describe the trend in the percentage of carbon dioxide in the Earth's atmosphere from 1800 to 2020.

Use data from **Figure 1**.

[3 marks]

Turn over ►

Carbon dioxide is a greenhouse gas.

0 1 . 4 Which of the following is also a greenhouse gas?

[1 mark]

Tick (✓) **one** box.

Argon

Methane

Nitrogen

Oxygen

0 1 . 5 Which of the following is an environmental problem caused by greenhouse gases?

[1 mark]

Tick (✓) **one** box.

Acid rain

Climate change

Global dimming

0 1 . 6 Calculate the relative formula mass (M_r) of carbon dioxide (CO_2).

Relative atomic masses (A_r): C = 12 O = 16

[2 marks]

Relative formula mass of carbon dioxide = _____

11

Turn over for the next question

Turn over ►

0 5

IB/M/Jun24/8464/C/2F

There are no questions printed on this page

*Do not write
outside the
box*

**DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED**

0 6

0 2

Different tests can be used to identify chemicals.

0 2 . 1

A student measured the melting points of four substances.

Table 1 shows the results.

Table 1

Substance	Melting point in °C
A	52 to 54
B	61
C	-2 to 0
D	80 to 82

Which substance was pure?

Give **one** reason for your answer.

[2 marks]

Substance _____

Reason _____

Question 2 continues on the next page

Anhydrous copper sulfate can be used to test for water.

The word equation for the reaction is:

0 2. 2 Complete the sentence.

Choose answers from the box.

[2 marks]

blue

green

red

white

yellow

When water is added to anhydrous copper sulfate, the colour changes

from _____ to _____.

0 2. 3 The reaction between anhydrous copper sulfate and water is reversible.

How does the word equation show that the reaction is reversible?

[1 mark]

0 2 . 4 The formula of anhydrous copper sulfate is CuSO_4

What is the total number of atoms in the formula CuSO_4 ?

[1 mark]

Tick (✓) **one** box.

3

4

6

7

0 2 . 5 Chlorine is a gas.

Describe the test for chlorine.

Give the result.

[2 marks]

Test _____

Result _____

8

Turn over for the next question

Turn over ►

0 9

IB/M/Jun24/8464/C/2F

0 3

Printer ink is a mixture of chemicals.

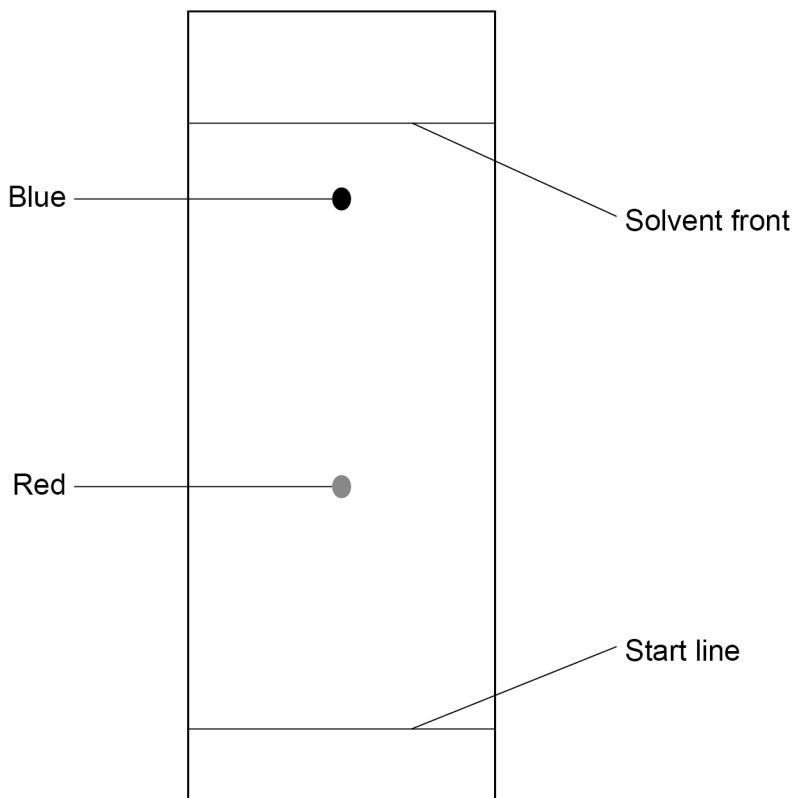
0 3. 1

What is the name given to a mixture that has been designed as a useful product?

[1 mark]

Tick (✓) one box.

Formula


Formulation

Fraction

A student used chromatography to investigate the colours in a printer ink.

Figure 2 shows the chromatogram.

Figure 2

1 0

0 3 . 2 The student used a ruler for the start line.

What would the student have used to draw the start line?

Give **one** reason for your answer.

[2 marks]

Reason _____

0 3 . 3 Determine the R_f value of the **red** colour.

Use the equation:

$$R_f = \frac{\text{distance moved by colour}}{\text{distance moved by solvent}}$$

[4 marks]

Distance moved by red colour _____

Distance moved by solvent _____

$R_f =$ _____

Question 3 continues on the next page

Turn over ►

0 3 . 4**Table 2** shows the R_f values of four blue colours.**Table 2**

Blue colour	R_f
Cerulean	0.40
Cobalt	0.15
Prussian	0.88
Ultramarine	0.68

The student determined that the R_f value of the blue colour in the printer ink was 0.86

Suggest which blue colour was used in the printer ink.

Give **one** reason for your answer.**[2 marks]**

Blue colour _____

Reason _____

9

1 2

0 4

Tap water must be safe to drink.

0 4. 1

What name is given to water that is safe to drink?

[1 mark]Tick (✓) **one** box.

Ground water

Potable water

Waste water

0 4. 2

Water is sterilised to make the water safe to drink.

Which **two** of the following are used to sterilise drinking water?**[2 marks]**Tick (✓) **two** boxes.

Carbon dioxide

Electrolysis

Filtration

Ozone

Ultraviolet light

Question 4 continues on the next page

1 3

Turn over ►

A student investigated the mass of dissolved solids in samples of river water, sea water and tap water.

This is the method used.

1. Weigh an evaporating basin.
2. Measure 100 cm³ of river water.
3. Pour the river water into the evaporating basin.
4. Heat the evaporating basin until all the water has evaporated.
5. Weigh the evaporating basin and dissolved solids.
6. Calculate the mass of dissolved solids in the water.
7. Repeat steps 1 to 6 with sea water and then with tap water.

0 | 4 | 3 Which is the most suitable equipment to measure 100 cm³ of water?

[1 mark]

Tick (✓) **one** box.

Beaker

Conical flask

Measuring cylinder

0 4 . 4 Table 3 shows the results.

Do not write outside the box

Table 3

Type of water	Mass in grams		
	Evaporating basin	Evaporating basin and dissolved solids	Dissolved solids
River	112.1	113.1	1.0
Sea	110.5	114.0	X
Tap	115.3	115.4	0.1

Calculate value X in Table 3.

[1 mark]

X = _____ g

0 4 . 5 Identify the variables used in the investigation.

Draw **one** line from each variable to the example of the variable.

[2 marks]

Variable

Example of variable

Control
Dependent

Mass of dissolved solids

Mass of evaporating basin

Room temperature

Type of water

Volume of water

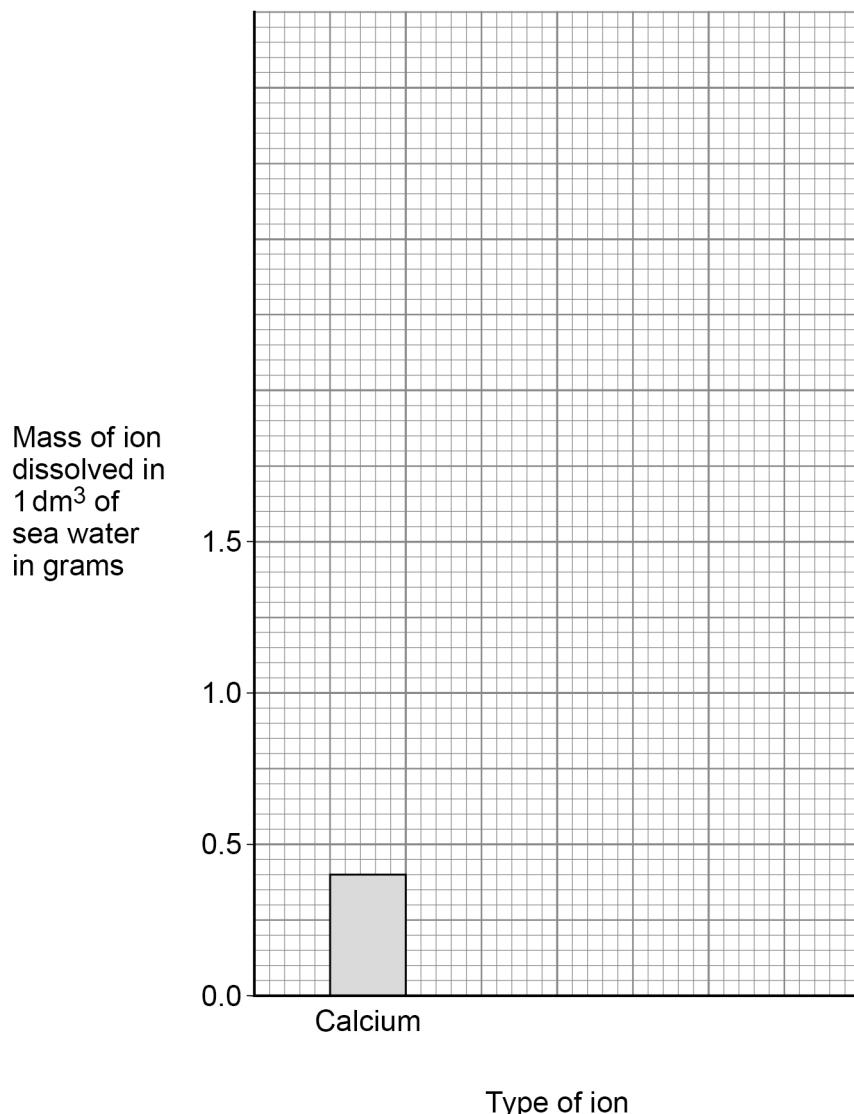
Turn over ►

1 5

Table 4 shows the mass of different types of ions dissolved in 1 dm³ of sea water.

Table 4

Type of ion	Mass of type of ion dissolved in 1 dm ³ of sea water in grams
Calcium	0.4
Magnesium	1.3
Sulfate	2.7


0 4 . 6 Complete **Figure 3**.

You should:

- complete the scale for the *y*-axis
- plot the data from **Table 4** as a bar chart.

[3 marks]

Figure 3

10

Turn over for the next question

Turn over ►

1 7

0 5

Life cycle assessments (LCAs) are used to assess the environmental impact of different products.

0 5 . 1

212 million kilograms of aluminium is used for packaging in the UK each year.

68.0% of aluminium packaging is recycled.

Calculate the mass of aluminium packaging that is recycled in the UK each year.

[2 marks]

Mass of aluminium recycled = _____ million kg

1 8

Do not write outside the box

0 5 . 2 Drinks cans are made from aluminium.

An aluminium can has a mass of 15.8 g.

$$1000 \text{ g} = 1 \text{ kg}$$

Calculate the **whole number** of aluminium cans that can be made from 4.00 kg of aluminium.

[4 marks]

Whole number of cans =

Question 5 continues on the next page

Turn over ►

0 5 . 3

Table 5 shows three methods used to dispose of wood and steel after use.

Do not write
outside the
box

Table 5

Percentage (%) of material disposed of by each method			
	As waste	Recycled	Burnt
Wood	58	36	6
Steel	15	85	0

Evaluate the sustainability of the disposal of wood and steel.

[4 marks]

10

2 0

0 6

Alkanes and alkenes are hydrocarbons.

0 6 . 1

Define the term 'hydrocarbon'.

[1 mark]

0 6 . 2

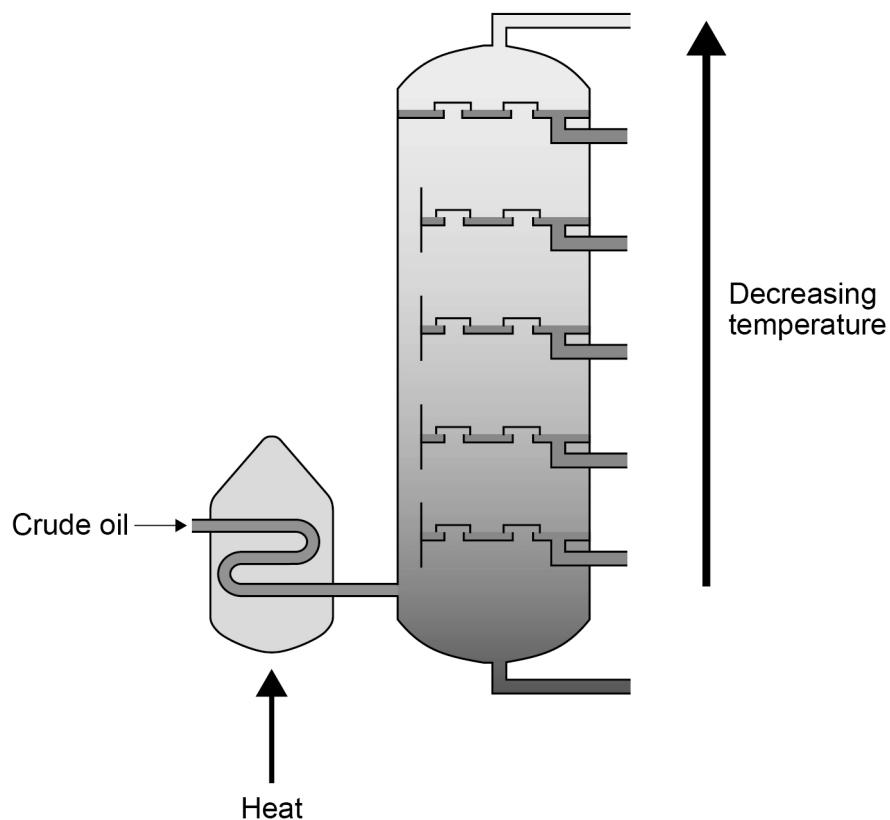
The general formula for alkanes is C_nH_{2n+2}

Determine the formula of the alkane with 10 carbon atoms.

[1 mark]

Formula = _____

Question 6 continues on the next page


2 1

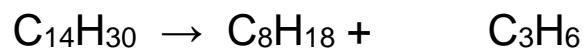
Turn over ►

0 6 . 3 Crude oil is a mixture of hydrocarbons.

Figure 4 represents industrial equipment used to separate crude oil into fractions.

Figure 4

Explain how crude oil is separated into fractions.


Use Figure 4.

[4 marks]

0 6 . 4 The alkane molecule $C_{14}H_{30}$ can be cracked to produce smaller molecules.

Balance the equation for the reaction.

[1 mark]

Question 6 continues on the next page

Turn over ►

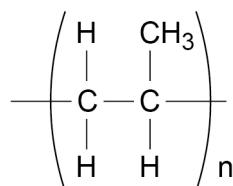
2 3

Propene (C_3H_6) is an alkene.

0 6 . 5 Describe the test for alkenes.

Give the result.

[2 marks]


Test _____

Result _____

0 6 . 6 Poly(propene) is made from propene.

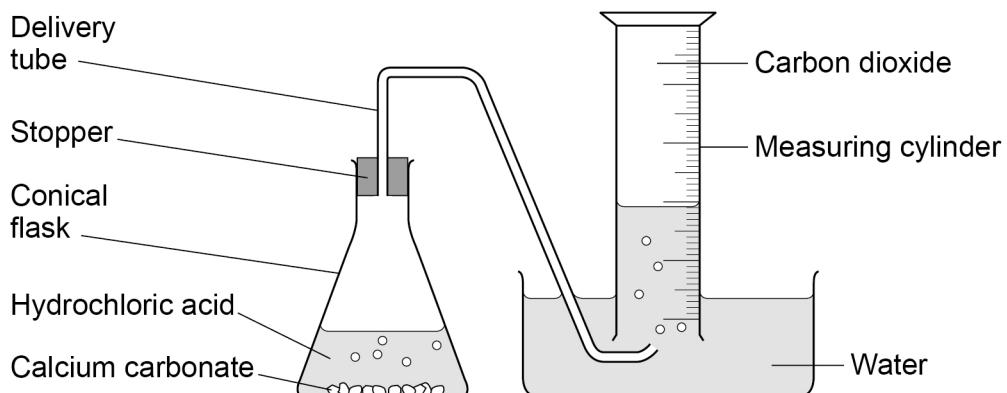
Figure 5 represents the repeating unit of poly(propene).

Figure 5

What type of substance is poly(propene)?

[1 mark]

0 7


Some factors affect the rates of chemical reactions.

0 7 . 1

A student investigated the effect of changing the particle size of calcium carbonate on the rate of reaction with hydrochloric acid.

Figure 6 shows the apparatus.

Figure 6

Describe a method the student could use to produce valid results.

[6 marks]

Turn over ►

2 5

0 7 . 2

The student investigated the effect of increasing the temperature on the rate of a reaction.

Explain the effect of increasing the temperature on the rate of a reaction.

Refer to particles and collisions in your answer.

[3 marks]

Catalysts affect the rate of reactions.

0 7 . 3 What is meant by a 'catalyst'?

[2 marks]

0 7 . 4 What are catalysts in biological systems called?

[1 mark]

—

12

END OF QUESTIONS

There are no questions printed on this page

*Do not write
outside the
box*

**DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED**

Question number	<p style="text-align: center;">Additional page, if required. Write the question numbers in the left-hand margin.</p>

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

There are no questions printed on this page

*Do not write
outside the
box*

**DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED**

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2024 AQA and its licensors. All rights reserved.

3 2

IB/M/Jun24/8464/C/2F